The F-35 Joint Strike Fighter (JSF) owes a bit of its existence to Henry Ford. Lockheed Martin Aeronautics adapted his concepts of mass production and common parts to affordably produce this multirole aircraft for multiple branches of the U.S. military—Air Force, Navy and Marine Corps—as well as U.S. allies.

There’s not much that’s simple about this 5th generation fighter’s technology. It combines stealth, fully fused sensor information and network-enabled operations. A portion of Lockheed Martin’s facility in Marietta, Ga., is dedicated to manufacturing the center wing section at a pace that accommodates a production rate of one aircraft a day. This production line replaces one that was first built at Lockheed Martin’s facility in Fort Worth, Tex.

With accommodations for F-35 production in Fort Worth resulting in floor space challenges, a portion of the fighter’s production was moved to Marietta. This new production line presented a material handling challenge of its own—one that couldn’t be addressed with overhead handling. The automotive industry proved to be a role model with its use of automated guided vehicles.

Why Guided Vehicles?

The Fort Worth facility’s use of overhead rail to move the wing assembly from station to station would not offer the time or space efficiency needed at the Marietta facility. The layout of the Marietta facility would require the kind of efficiency found in a car plant producing 20 to 40 vehicles an hour, so what better source to borrow material handling best practices from than the automotive industry?

“The aerospace industry has benefited from the experience of the automotive industry because its high production rates have pushed technology to be more automated,” says Peter Neumeier, of the aerospace engineer staff at Lockheed Martin. “We needed a production line to satisfy the rate of one aircraft a day for whatever variant was coming down the line. The Marietta facility had floor space constraints. So we performed a lean event and determined we needed to find a different solution to the transport of the center wing section. Fort Worth’s overhead rail system took up too much floor space and didn’t give us the flexibility we were looking for. We decided an AGV of some kind was a better solution.”

Lockheed selected Fori Automation to provide the AGV system. According to Paul Meloche, vice president of sales for Fori, much of the AGV technology implemented at Lockheed that came from the automotive industry included the components that enable production capacity and accuracy. But Fori implemented some new technologies as well.

“Our drive steer mechanism provides the steering and propulsion,” Meloche says. “It’s a suspended drive steer so it can articulate over rough concrete. We also developed a precision sensor measurement device for the magnetic field.”